| ا رکیسوم :                                                                                                                                                                                                                                             | وم .            |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| التاريخ:                                                                                                                                                                                                                                               | <del>ن</del> :  |             |
| -الفصل الأول: الأكسدة والاختزال                                                                                                                                                                                                                        |                 |             |
| - تقسيم التفاعلات الكيميائية إلى قسمين هما تقسيم التفاعلات الكيميائية إلى قسمين هما                                                                                                                                                                    |                 |             |
| - <b>تفاعلات الإحلال المزدوج :</b> هي التفاعلات التي لا يحدث فيها انتقال للإلكترونات                                                                                                                                                                   |                 |             |
| - <b>تفاعلات الأكسدة والاختزال :</b> هي التفاعلات التي يحدث فيها انتقال الالكترونات من أحد المتفاعلات الي الاخر                                                                                                                                        | الي الاخر       |             |
| د التأكسد : هو العدد الذي يمثل الشحنة الكهربائية الموجبة أو السالبة التي تحملها ذرة العنصر في المركب أو الأيون .                                                                                                                                       | ركب أو الأيون . |             |
| ، ﴿ _ اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية :                                                                                                                                                                        |                 |             |
| فرع الكيمياء الفيزيائية الذي يهتم بدراسة التحولات الكيميائية التي تنتج أو تمتص تياراً كهربائياً. ( عملية اكتساب المادة إلكترونات ونقص عدد تأكسدها. المادة التي يحدث لها عملية اختزال وينقص عدد تأكسدها. عملية فقد المادة إلكترونات وزيادة عدد تأكسدها. |                 | (<br>(<br>( |
| المادة التي يحدث لها عملية أكسدة ويزداد عدد تأكسدها.                                                                                                                                                                                                   |                 | (           |
| ٢ ـ أكمل الفراغات في العبارات التالية بما يناسبها علميا :                                                                                                                                                                                              |                 |             |
| تُستخدم العمليات الإلكتروكيميائية في و و و                                                                                                                                                                                                             | على شريحة       |             |
| ٣ ـ علل ١٤ يلي تعلىلا علميا دقيقا:                                                                                                                                                                                                                     |                 |             |
| يبهت لون المحلول الأزرق لكبريتات النحاس II عند غمر شريحة من الخارصين به .                                                                                                                                                                              |                 |             |
| يتآكل سطح شريحة من الخارصين عند غمرها في محلول كبريتات النحاسII .                                                                                                                                                                                      |                 |             |
| ، ٤ ـ حدد نوع العمليات التي تمثلها كلِ من أنصاف التفاعلات التالية:                                                                                                                                                                                     |                 |             |
| $	ext{$                                                                                                                                                                                                                                                |                 |             |
| $\sim$ Na $_{(\mathrm{aq})}$ عثل عملية $\sim$ Na $_{(\mathrm{aq})}$ + 1e                                                                                                                                                                               |                 |             |
|                                                                                                                                                                                                                                                        |                 |             |
|                                                                                                                                                                                                                                                        |                 |             |

اليوم:

#### التاريخ:

#### وزن معادلات الأكسدة والاختزال

#### قواعد حساب أعداد التأكسد:

- Na , Ca , K في صفر (0) كما في -1 .  $H_2$  ,  $N_2$  ,  $Cl_2$  في حالة الذرات غير المتحدة أو ذرة في جزيء أحد العناصر يكون عدد التأكسد يساوي صفر (0) كما في -1 .
  - ٢- في الايونات وحيدة الذرة يكون عدد التأكسد مساويا لعدد الشحنات التي يحملها الايون.

. Na<sup>+</sup>, K<sup>+</sup>, Fe<sup>3+</sup>, Ca<sup>2+</sup>, N<sup>3-</sup>, O<sup>2-</sup>، Cl<sup>-</sup>، أمثلة ،

- "- عدد التأكسد للهيدروجين يساوي (1+) في معظم مركباته  $H_2$ O .  $H_3$  , HCl ,  $H_3$  , HCl ,  $H_4$  .  $H_4$ O .  $H_5$ O .  $H_5$ O .  $H_6$ O
- $H_2O_2$  ,  $K_2O_2$  ,  $Na_2O_2$  في الأكاسيد يساوي (1-) كما في معظم مركباته عدا فوق الأكاسيد يساوي (1-) كما في معظم مركباته عدا فوق الأكاسيد يساوي (1-) كما في ومع الفلور يكون عدد تأكسده (1-) أو + )
  - ٥- عدد تأكسد الفلور دامًا (1-) لأنه أعلى العناصر سالبية.
  - ٦- المجموع الجبري لأعداد التأكسد في المركب يساوي صفر .
  - ٧- المجموع الجبري لأعداد التأكسد في الايون المتعدد الذرات يساوي شحنة الأيون .

| قيمة عدد التأكسد | قواعد حساب عدد التأكسد                                           |
|------------------|------------------------------------------------------------------|
| +1               | في المركبات عدد تأكسد العناصر القلوية   K، Li، Na                |
| +2               | عدد تأكسد العناصر القلوية الأرضية في المركباتMg ، Ca             |
| +3               | عدد تأكسد Al في المركبات                                         |
| -2               | عدد تأكسد S مع الفلزات أو الهيدروجين                             |
| -1               | عدد تأكسد Cl ، Br، I في المركبات ( ماعدا مع الأكسجين أو الفلور ) |
| -1               | عدد تأكسد F في جميع المركبات                                     |
| -2               | عدد تأكسد الأكسجين في معظم المركبات                              |
| -1               | عدد تأكسد الأكسجين في فوق الأكاسيد ( البيروكسيدات )              |
| -1               | عدد تأكسد الهيدروجين مع الفلز ( في هيدريدات الفلزات )            |
| -1               | عدد تأكسد NO <sub>3</sub> ، OH                                   |
| +1               | عدد تأكسد <sup>+</sup> NH <sub>4</sub>                           |
| -2               | عدد تأكسد <sup>-2</sup> ، SO <sub>4</sub> عدد تأكسد              |
| صفر              | ( مرکبات متعادلة ) $ m H_2O$ ، $ m NH_3$ عدد تأکسد               |

# س ١ \_ اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية :

| ( | ١- تفاعلات يحدث فيها انتقال إلكترونات من أحد المتفاعلات إلى الآخر.                                                                     |
|---|----------------------------------------------------------------------------------------------------------------------------------------|
| ( | ٢- تفاعلات لا يحدث فيها انتقال إلكترونات.                                                                                              |
| ( | ٣- العدد الذي يمثل الشحنة الكهربائية الموجبة أو السالبة التي تحملها ذرة العنصر في المركب أو الأيون (                                   |
|   | س ٢ _ أكمل الفراغات في العبارات التالية بما يناسبها علمياً:                                                                            |
|   | ١) إذا زاد عدد التأكسد يكون العنصر عاملاً وحدث له عملية                                                                                |
|   | ٢) إذا نقص عدد التأكسد يكون العنصر عاملاً وحدث له عملية                                                                                |
|   | ٣) عدد تأكسد العناصر القلوية في المركبات ( Na , Li , K ) يساوي                                                                         |
|   | ٤) عدد تأكسد العناصر القلوية الأرضية في المركبات ( Mg , Ca ) يساوي                                                                     |
|   | o) عدد تأكسد Al في المركبات يساوي عدد تأكسد S مع الفلزات أو الهيدروجين يساوي                                                           |
|   | ٦) عدد تأكسد Cl , Br , I في مركباتها يساوي ماعدا مع O) او F )                                                                          |
|   | ٧) عدد تأكسد الفلور في جميع مركباته يساوي                                                                                              |
|   | ، عدد تأكسد ذرة الاكسجين $O$ في معظم مركباته يساوي وفي فوق الأكاسيد (مثل $H_2O_2$ ) يساوي                                              |
|   | <ul><li>٩) عدد تأكسد H مع الفلزات يساوي ومع اللافلزات يساوي</li></ul>                                                                  |
|   | عدد تأکسد $^{	ext{OH}}$ ، $^{	ext{OH}}$ یساوي وعدد تأکسد $^{	ext{SO}}_4$ ، $^{	ext{CO}}_3$ یساوي $^{	ext{NO}}_3$ یساوي $^{	ext{NO}}_3$ |
|   | ا ۱۱) عدد تأکسد $^+_4$ یساوی عدد تأکسد $^3$ یساوی                                                                                      |
|   | $2\mathrm{Na} + \mathrm{Cl}_2 \longrightarrow 2\mathrm{NaCl}$ س٣: في التفاعل التالي:                                                   |
|   | يكون العامل المؤكسد هو العامل المختزل هو                                                                                               |
|   | س٤: حدد نوع التفاعل في التفاعلات التالية:                                                                                              |
|   | $HCl + NaOH \rightarrow NaCl + H_2O$                                                                                                   |
|   | 2HCl + Fe $\rightarrow$ FeCl <sub>2</sub> + H <sub>2</sub>                                                                             |

# وزن معادلات الأكسدة والاخترال

# ١ - خطوات وزن المعادلات بطريقة أنصاف التفاعلات ( في وسط همضي )

- ١- اكتب نصفى تفاعل الأكسدة والاختزال.
- ٢- زن ذرات العناصر بالطريقة المعتادة عدا الأكسيجين والهيدروجين
- ٣- زن الأكسجين بإضافة جزئ ماء عن كل ذرة أكسجين ناقصة في طرف المعادلة حيث ينقص الأكسجين
- نقص الهيدروجين بإضافة أيون ( $H^+$ ) عن كل ذرة هيدروجين ناقصة في طرف المعادلة حيث ينقص الهيدروجين ألهيدروجين
  - o- زن الشحنات بإضافة الكترونات الى كل نصف تفاعل على حدة
  - 7- نوحد عدد الالكترونات المفقودة والمكتسبة بضرب نصفي التفاعل بالمعاملين المناسبين .
    - ٧- اجمع نصفى التفاعل.

| به في الوسط ال <i>حمصي</i> : | اعلات الناب                     | صاف الله      | س ۱ ـ رن الا     |
|------------------------------|---------------------------------|---------------|------------------|
|                              | $\operatorname{Cr_2O_7}^{2-}$   | $\rightarrow$ | Cr <sup>3+</sup> |
| <br>                         |                                 |               |                  |
|                              |                                 |               | نوع التغير :   - |
|                              | $PbO_2$                         | $\rightarrow$ | Pb <sup>2+</sup> |
| <br>                         |                                 |               |                  |
|                              |                                 |               | نوع التعير . •   |
|                              | H <sub>3</sub> AsO <sub>3</sub> | $\rightarrow$ | $H_3$ As $O_4$   |
| <br>                         |                                 |               |                  |
|                              |                                 |               | نوع التغير : -   |
|                              | $C_2O_4^{2-}$                   | $\rightarrow$ | $CO_2$           |
| <br>                         |                                 |               |                  |

# ٧ - خطوات وزن المادلات بطريقة أنصاف التفاعلات ( في وسط قاعدي )

| والاختزال . | الأكسدة | تفاعل | نصفي | اکتب | ۱ - ۱ | ١ |
|-------------|---------|-------|------|------|-------|---|
| , ,         |         | -     | _    | •    |       |   |

- ٢- زن ذرات العناصر بالطريقة المعتادة عدا الأكسيجين والهيدروجين
- ٣- زن الأكسجين بإضافة جزئ ماء عن كل ذرة أكسجين ناقصة في طرف المعادلة حيث ينقص الأكسجين
- **3** زن الهيدروجين بإضافة جزيء ماء، عن كل ذرة هيدروجين ناقصة، إلى طرف المعادلة حيث ينقص الهيدروجين وإضافة أنيون OH<sup>-</sup> إلى الطرف الآخر
  - ٥- زن الشحنات بإضافة الكترونات الى كل نصف تفاعل على حدة
  - ٦- نوحد عدد الالكترونات المفقودة والمكتسبة بضرب نصفى التفاعل بالمعاملين المناسبين .
    - ٧- اجمع نصفي التفاعل .

| في الوسط القاعدي: | نصاف التفاعلات التالية | ۱ ـ زن أ | w |
|-------------------|------------------------|----------|---|
|-------------------|------------------------|----------|---|

| $\operatorname{Cr_2O_7}^{2-}$ | $\rightarrow$ | Cr <sup>3+</sup>                 |
|-------------------------------|---------------|----------------------------------|
| <br>PbO <sub>2</sub>          | <b>→</b>      | : نوع التغير<br>Pb <sup>2+</sup> |
| <br>$H_3AsO_3$                |               |                                  |
| <br>$C_2O_4^{\ 2^-}$          |               | -                                |
| <br>                          |               | نوع التغير :                     |

| غير موزونة والمطلوب:  | $Cr_2O_7^{2-} + SO_7^{2-}$ | $O_2 \longrightarrow$            | Cr <sup>3+</sup>   | لتالية: <sup>-2</sup> SO <sub>4</sub> + | س١ - المعادلة ا  |
|-----------------------|----------------------------|----------------------------------|--------------------|-----------------------------------------|------------------|
|                       |                            | - والعامل المختزل                |                    | مل المؤكسد                              | ١ – تحديد العا   |
|                       | مضي.                       | عزئية في الوسط الح               | - إلكترون الج      | ة بطريقة الأيون                         | ۲ – وزن المعادل  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
| <br>موزونة والمطلوب : | .à IO-                     | $NO_2$ $\rightarrow$             | T ,                | التالية: NO <sub>3</sub> -              | #151_11 Y        |
|                       |                            | - والعامل المختزل                |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       | مصي.                       | عِزئية في الوسط الح              | - إلكترون الج      | ه بطریقه الایون                         | ۲ – ورن المعادر  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
| نير موزونة والمطلوب : | $\epsilon Sn^{2+} + Cr$    | , O <sub>-</sub> <sup>2-</sup> → | Sn <sup>4+</sup> - | + Cr³+ :: ליוו לי                       | سـ٣ - المحادلة ا |
| ير نورون ونسوب .      |                            |                                  |                    |                                         |                  |
|                       |                            | - والعامل المختزل                |                    |                                         |                  |
|                       | مضي.                       | عِزئية في الوسط الح              | – إلكترون الج      | ه بطریقه الایون                         | ۲ – وزن المعادل  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |
|                       |                            |                                  |                    |                                         |                  |

| ة والمطلوب :          | غير موزون   | MnO | + I <sup>-</sup> | $\rightarrow$ | $MnO_2$      | + I <sub>2</sub> | المعادلة التالية:  | - ۱س   |
|-----------------------|-------------|-----|------------------|---------------|--------------|------------------|--------------------|--------|
|                       |             |     | للختزل           | والعاما       |              | ئسد              | بديد العامل المؤدّ | ۱ – تح |
|                       |             | . ي | لوسط القلوو      | لجزئية في ا   | - إلكترون اا | نة الأيون        | ِن المعادلة بطرين  | ۲ – وز |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
| ة والمطلوب :          | غير موزوناً | MnO | + I <sup>-</sup> | $\rightarrow$ | $MnO_2$      | + I <sub>2</sub> | المعادلة التالية:  | س۲ -   |
|                       |             |     | للختزل           | والعاما       |              | <i>کس</i> د      | بديد العامل المؤك  | ۱ – تح |
|                       |             | . ي | لوسط القلوع      | لجزئية في ا   | - إلكترون اا | نة الأيون        | ِن المعادلة بطرين  | ۲ – وز |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
| (t t) 25 · ·          | N:O         |     | 2-               | NI://         | )II) .       | CO 2-            | 2 111. 21 1        |        |
| غير موزونة والمطلوب : |             |     |                  |               |              |                  | المعادلة التالية:  |        |
|                       |             |     |                  |               |              |                  | مديد العامل المؤك  |        |
|                       |             | . د | لوسط القلوع      | لجزئية في ا   | - إلكترون اا | نة الايون        | ِن المعادلة بطرين  | ۲ – وز |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  |               |              |                  |                    |        |
|                       |             |     |                  | ·             |              |                  |                    |        |

# الخلايا الإلكتروكيميائية

#### خلايا جلفانية (فولتية) خلايا الكتروليتية (تحليلية)

الخلايا الإلكتروكيميائية

خلايا الكتروليتية (تحليلية)

خلايا جلفانية ( فولتية )

#### س ﴿ \_ اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية :

| 📫 أنظمة أو أجهزة تقوم بتحويل الطاقة الكهربائية إلى طاقة كيميائية أو العكس                                 |   |
|-----------------------------------------------------------------------------------------------------------|---|
| من خلال تفاعلات أكسدة واختزال.                                                                            | ) |
| 💠 خلايا تنتج طاقة كهربائية من خلال التفاعلات الكيميائية ( الأكسدة والاختزال )                             | ) |
| 🛶 خلايا تحتاج إلى طاقة كهربائية وينتج منها تفاعل كيميائي من نوع الأكسدة والاختزال                         | ) |
| 🛨 الطاقة المصاحبة لاكتساب المادة للإلكترونات أي ميلها إلى الاختزال                                        | ) |
| 🛨 جهد الاختزال عند الظروف القياسية                                                                        | ) |
| (عند درجة الحرارة $^{\circ}$ C وضغط غاز $^{\circ}$ 101 kPa وتركيز المحلول 1M (عند درجة الحرارة $^{\circ}$ |   |
| شروط توليد التيار :                                                                                       |   |
|                                                                                                           |   |
|                                                                                                           |   |

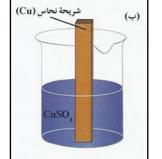
| أنواع حاملات الشحنة                                                     |                                                                    |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| موصلات أيونية ( الكتروليتية )                                           | موصلات فلزية ( إلكترونية )                                         |  |  |  |  |
| المواد التي توصل التيار الكهربائي عن طريق حركة<br>الايونات(-،+) داخلها. | المواد التي توصل التيار الكهربائي عن طريق حركة الالكترونات داخلها. |  |  |  |  |

# س ٢ ـ ماذا يحدث عند وضع شريحة خارصين في محلول كبريتات النحاس II ؟ $Zn^{2+}_{(aq)} + Cu_{(s)}$ $\Delta H = -217.6 \; KJ/mol$ . في التفاعل التالي: $Zn_{(s)} + Cu^{2+}_{(a0)}$ ١- التفاعل هِثل حدوث عمليتي ---------- و ---------٢- يحدث التفاعل تلقائياً لأنه -------- للحرارة. ٣- ﴿ عِكن الحصول من هذا التفاعل على طاقة ----------- ولكن لا عِكن الحصول منه على طاقة ----------لعدم وجود موصل ------ اللازم لحركة الإلكترونات (دائرة مفتوحة). ٤- المادة التي تأكسدت هي ------- والمادة التى اختُزلت هي --------٥- الخارصين ------ نشاطاً من النحاس، لذلك يحل -------- محل ------ في محاليل مركباته. ٦- جهد الاختزال ------- جهد الأكسدة للنوع نفسه مع اختلاف الإشارة. ٧- جهد الاختزال القياسي للهيدروجين يساوي -------٨- حاملات الشحنات في الموصلات الفلزية هي ---------- بينما حاملات الشحنات في الموصلات الإلكتروليتية-----س ٢ - علل لما يلى تعلملا علميا دقيقا : ١- يمكن أن يتفاعل فلز الخارصين مع حمض الهيدروكلوريك، بينما لا يتفاعل النحاس مع الحمض؟ ٢- لا يمكن الحصول على تيار كهربائي عند غمر شريحة من الخارصين في محلول كبريتات النحاس.

#### أنهاف الغلايا

#### س ١ \_ اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية :

وعاء يحتوي على شريحة مغمورة جزئياً في محلول إلكتروليتي لأحد مركبات مادة الشريحة عند درجة C 25° C وضغط 101 kPa وتركيز المحلول 1M. (


1.

## أمثلة على أنعاف الفلايا:

#### ١- نصف خلية الخارصين القياسية:

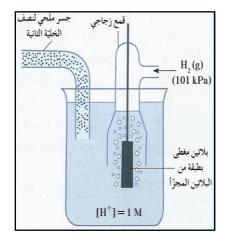
تتكون من وعاء يحتوى على شريحة خارصين مغمورة جزئيا في محلول من كاتيونات الخارصين 2n<sup>+2</sup> تركيزه 1M عند C وضغط 101 KPa الخارصين

- نصف التفاعل:
- + رمزها الاصطلاحي :



شريحة خارِصين (Zn)

(1)


ZnSO

#### ٢-نصف خلية النحاس القياسية:

(تتكون من وعاء يحتوى على شريحة نحاس مغمورة جزئيا في محلول من كاتيونات النحاس Cu<sup>+2</sup> تركبزه 1M عند C وضغط 101 KPa ( 101 KPa

- نصف التفاعل:
- 🛨 رمزها الاصطلاحي :
- ❖ نتيجة حالة الاتزان:

- لمزها الاصطلاحي :



نصف التفاعل:

#### الخلية الجلفانية

س1 - اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:

١ - خلية تنتج طاقة كهربائية من خلال التفاعلات الكيميائية . ) (

#### خلية الخارصين – النحاس القياسية

🛨 ما هو الجسر الملحي ؟

🛨 ما أهمية الجسر الملحي ؟

س١- حدد نصف خلية الاختزال ونصف خلية الأكسدة في الخلية الفولتية المكونة من نصفى الخلية التالية ثم احسب جهد الخلية القياسي واكتب المعادلة النهائية.

$$Fe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)} \qquad E^{0}_{Fe}^{3+}_{/Fe}^{2+} = +0.77 \text{ V}$$

$$E^{\circ}_{Fe^{-}/Fe^{2+}} = + 0.77 \text{ V}$$

$$Ni^{2+}_{(aq)} + 2e^{-} \rightarrow Ni_{(s)} \qquad E^{O}_{Ni}^{2+}_{Ni} = -0.25 \text{ V}$$

$$E_{Ni/Ni}^{\circ} = -0.25 \text{ V}$$

1 M Fe<sup>2+</sup> 1 M Ni<sup>2+</sup> س ٢ - يحدث تفاعل الأكسدة والاختزال التلقائي التالي في الخلية الفولتية الموضحة في الشكل التالي:

$$Ni^{2+}_{(aq)} + Fe_{(s)} \longrightarrow Ni_{(s)} + Fe^{2+}_{(aq)}$$

- ١) حدد الأنود والكاثود
- ٢) حدد الشحنات على الأقطاب
- ٣) اكتب نصف التفاعل الحادث عند كل من الأنود و الكاثود
  - ٤) احسب جهد الخلية القياسي

|                                                                 |                                             |                           | : 4                       | لايا التاليه  | نصفي الخا       | خليه فولتيه مكونه من                            | س۲ -                         |                              |
|-----------------------------------------------------------------|---------------------------------------------|---------------------------|---------------------------|---------------|-----------------|-------------------------------------------------|------------------------------|------------------------------|
|                                                                 |                                             | + 2                       | 2e                        | $\rightarrow$ | $Cu_{(s)}$      | $E^{\circ} Cu^{2+}/Cu = +0$                     | .34V                         |                              |
|                                                                 |                                             | $\mathrm{Al}^{3+}_{(aq)}$ | $\mathrm{Al}^{3+}_{(aq)}$ | + 3           | se <sup>-</sup> | $\rightarrow$                                   | $\mathrm{Al}_{(\mathrm{s})}$ | $E^{\circ} Al^{3+}/Al = -1.$ |
|                                                                 |                                             |                           | اسي.                      | دها القي      | احسب جھ         | معادلة الخلية النهائية و                        | اکتب ،                       |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           | ·                         | نصفين         | ه الخلية مز     | علية جلفانية تتألف هذه                          | <br><u>س۳: خ</u>             |                              |
| AgNO بتركيز 0.2M وعلى شريحة فضة.                                | $_3$ الفضة                                  | ول نترا                   | محلر                      | 1 50 من       | nL باء على      | خلية فضة : يحتوي الوء                           | نصف                          |                              |
| بتركيز $0.1 	ext{M}$ وعلى شريحة حديد. Fe( $	ext{NO}_3)_2$ (II). | رات الحديد                                  | لول نت                    | ن مح                      | 50 m مر       | عاء على 1L      | خلية حديد : يحتوي الو                           | نصف                          |                              |
| K                                                               | $\mathrm{NO}_3$ سيوم                        | البوتا                    | نترات                     |               |                 | سر الملحي فيحتوي على                            |                              |                              |
|                                                                 |                                             |                           |                           | _             | -               | $V$ , $E_{Fe/Fe}^{\circ 2+} = -0.4 \text{ V}$ : | **                           |                              |
| ه سير الالكترونات.                                              | كاثود واتجاد                                | ود والك                   | ، الأنو                   | محا عليه      | للخلية موظ      | ) ارسم شكل تخطيطي                               |                              |                              |
|                                                                 |                                             |                           |                           |               |                 | ) التفاعل عند الأنود                            |                              |                              |
|                                                                 |                                             |                           |                           |               |                 | ) التفاعل عند الكاثود                           |                              |                              |
|                                                                 |                                             |                           |                           |               |                 | ) التفاعل الكلي<br>) احسب جهد الخلية            |                              |                              |
|                                                                 |                                             |                           |                           |               | ااخا ت          | )   أحسب جهد الحليه<br>)   أكتب الرمز الاصطلاح  |                              |                              |
|                                                                 |                                             |                           |                           |               | ي تتعليه        | ١ - اكتب الرهر الأصطلاح                         | , <b>,</b>                   |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           | با التالية:   | صفي الخلا       | غلية فولتية مكونة من ن                          | <u>س٤: ح</u>                 |                              |
|                                                                 | $\mathrm{Ag}^{\scriptscriptstyle{\dagger}}$ | +<br>(aq) +               | - e                       | $\rightarrow$ | $Ag_{(s)}$      | $E^{O_{Ag/Ag}} = + 0$                           | .80V                         |                              |
|                                                                 |                                             |                           |                           |               |                 | $E^{\circ}_{Cu}^{2+}/_{Cu} = +0$                |                              |                              |
|                                                                 | 3.                                          | (aq)                      |                           |               |                 | معادلة الخلية النهائية و                        |                              |                              |
|                                                                 |                                             |                           | ٠٠٠٠                      |               |                 |                                                 |                              |                              |
|                                                                 |                                             |                           |                           |               |                 |                                                 |                              |                              |

# تطبيقات على الغلايا الجلفانية

|                                               | بجارية | الخلايا الت    |                                                                                    |
|-----------------------------------------------|--------|----------------|------------------------------------------------------------------------------------|
| خلايا ثانوية<br>قابلة للشحن<br>المركم الرصاصي |        | يبون )         | خلايا أولية<br>غير قابلة للشحن<br>الخلية الجافة ( خارصين – كر                      |
|                                               |        | <b>ڪربون</b> ) | ۱ - <b>الخلية الجافة</b> ( <b>خارصين – د</b><br>تتكون من :<br>الأنود:              |
| <br>و                                         | 9      | <br>طب مکون من | لكاثود:<br>للهراغ بين القطبين معجون ر                                              |
| <br>                                          |        |                | التفاعلات في الخلية :<br>التفاعل عند الأنود:<br>تفاعل عند الكاثود:                 |
| <br>                                          |        | ود:            | عدى عده مورود.<br>عما دور ثاني أكسيد المنجنيز؟<br>تفاعل الاختزال النهائي عند الكاث |
| <br>                                          |        |                | التفاعل النهائي للخلية:                                                            |
|                                               |        |                |                                                                                    |

# ٢ - المركم الرصاصي ( بطارية السيارة ) يتكون المركم الرصاصي من: التفاعلات في الخلية : التفاعل عند الأنود: -----------------------تفاعل عند الكاثود: ----------تفاعل عند الكاثود: 🛨 ما دور ثاني أكسيد المنجنيز؟ --------------تفاعل الاختزال النهائي عند الكاثود: 🛨 🛨 التفاعل النهائي للخلية: ليف يمكن إعادة شحن المركم؟ ٣ - خلايا الوقود خلية الوقود: هيدروجين - اكسيجين التفاعلات الحادثة: عند الأنود (غاز الهيدروجين): عند الكاثود (غاز الأكسجين): التفاعل النهائي : -------س ٢ - أعد كتابة العبارة بعد تصحيح الخطأ: 1- مكن إعادة شحن خلية لوكلانشيه: ----------2- لا يمكن إعادة شحن المركم الرصاصي: -------------------------------3- تحتاج خلايا الوقود إلى إعادة شحن: --4- في الخلايا الجلفانية قطب الأنود إشارته موجبة وتحدث عنده عملية اختزال: --------------------------

5- في الخلايا الجلفانية قطب الكاثود إشارته سالبة وتحدث عنده عملية اكسدة: --------

# أنصاف الخلايا وجهد الخلية

| <u>ارة من العبارات التالية :</u>                      | س١ - اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عب                        |
|-------------------------------------------------------|------------------------------------------------------------------------------|
| ولت ( )                                               | مقياس قدرة الخلية على انتاج تيار كهربائي. ويُقاس بوحدة الفر                  |
|                                                       | س ٢ - أكمل الفراغات في العبارات التالية ما يناسبهاً علمياً:                  |
| ، يحدث عنده وجهد الاختزال لنصف                        | ١- جهد الخلية هو الفرق بين جهد الاختزال لنصف الخلية التي                     |
|                                                       | الخلية التي يحدث عنده                                                        |
| $E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$      |                                                                              |
| عند الكاثود ويحدث عند الأنود .                        |                                                                              |
| لایا ؟                                                | س ٣ - كيف عِكن قياس جهود الاختزال القياسية لأنصاف الخ                        |
|                                                       |                                                                              |
|                                                       |                                                                              |
|                                                       | 🛨 إذا كان القطب أنودا ونصف خلية الهيدروجين كاثودا                            |
| جهد الخلية مسبوقا بإشارة سالبة                        | جهد الاختزال القطبي القياسي لنصف خلية الأنود = Ecell                         |
| كبحيث كان قطبها أنود ونصف خلية الهيدروجين القياسية    | $\mathrm{Sn}^{2+}/\mathrm{Sn}$ س٥ - خلية جلفانية مكونة من نصف الخلية القياسي |
| غلية تساوي ٠,١٤ فولت فان جهد الاختزال القياسي لنصف    | بحيث كان قطبها كاثود والقوة المحركة الكهربية لهذه ال                         |
|                                                       | الخلية Sn²+/Sn يساوي فولت.                                                   |
|                                                       | ∔ إذا كان القطب كاثودا ونصف خلية الهيدروجين أنودا                            |
| جهد الخلبة مسبوقا بإشارة موجبة                        | جهد الاختزال القطبي القياسي لنصف خلية الكاثود = Ecell                        |
|                                                       |                                                                              |
| C بحيث كان قطبها كاثوداً وقطب الهيدروجين القياسي بحيث | $ m u^{2+}/Cu$ س7 - خلية جلفانية مكونة من نصف الخلية القياسي                 |
| ٠,١ فولت فان جهد الاختزال القياسي لنصف الخلية النحاس  | كان أنود والقوة المحركة الكهربية لهذه الخلية تساوى ٣٤                        |
|                                                       | يساوي فولت .                                                                 |
|                                                       | س٧ - أكمل الفراغات في العبارات التالية بما يناسبها علميا:                    |
| ىندە عملية فيمثل نصف خلية                             | ١ - نصف الخلية الجلفانية الذي له جهد اختزال أقل تحدث ع                       |
|                                                       | ٢ - نصف الخلية الجلفانية الذي له جهد اختزال أكبر تحدث ع                      |
|                                                       |                                                                              |

# سلسلة جمود الاخترال القياسية

| عبارة من العبارات التالية:                            | س١ - اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| اختزالها القياسية. (                                  | ترتيب أنصاف خلايا مختلفة ترتيباً تصاعدياً تبعاً لجهود ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <u>:</u>                                              | س ٢ - أكمل الفراغات في العبارات التالية بما يناسبها علميا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| النحاس يساوي V 0.34 V ،فإن جهد الأكسدة القطبي القياسي | ١) إذا كان جهد الاختزال القطبي القياسي لنصف خلية ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                       | لنصف خلية النحاس يساوي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| بهد اختزال وهو عنصر                                   | ۲) أقوى العوامل المختزلة يكون له ج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| جهد اختزال وهو عنصر                                   | ٣) أقوى العوامل المؤكسدة يكون له                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ة وضع علامة () في المربع المقابل لها:                 | س٣ - اختر الإجابة الصحيحة علميا لكل من العبارات التالي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| الاختزال بالفولت بين القوسين)                         | ١- أقوي عامل مؤكسد من بين الأنواع التالية هـو: (جهد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $S + 2 e^{-} \longrightarrow S^{2-}  (0.48 -)  \Box$  | $Cd^{2+} + 2e^{-} \rightarrow Cd \qquad (0.4-) \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Bi^{3+} + 3 e^{-} \rightarrow Bi  (0.2 +)  \Box$     | $Br_2 + 2 e^{-} \rightarrow 2 Br^{-} (1.09 +) \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| زال القياسية بين القوسين ) هو:                        | ٢- أفضل العوامل المختزلة من الأنواع التالية ( جهود الاخت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ( - 2.71 V ) Na <sup>+</sup>                          | $(+0.34 \text{ V}) \text{ Cu}^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $( + 1.2 \text{ V} ) \text{ Pt}^{2+} $                | $(-2.38 \text{ V}) \text{ Mg}^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ملات الكيميائية من بين الفلزات التالية هو:            | ٣- الفلز الذي له أكبر قدرة على فقد إلكترونات أثناء التفاء                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                       | (جهود الاختزال بين القوسين )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 🗖 Pb ( - ۱۲۲، فولت )                                  | 🗖 Co (- ۰٫۲۸ فولت )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rb ( -۲,۹۲٥ فولت )                                    | سا ۰٫۳٤ + ) Cu طولت )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | يحل محل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                       | ً .<br>أكثر نشاطا من                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                       | to make                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ات الفلز الأعلى جهد اختزال في محاليل مركباته.         | الفلز الأقل جهد اختزال يعسر كاتيون ك |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| يحدث بسكل تلفاني ومنه تستنج.                                             | $Z\Pi_s + C\Pi_{aq}$ / $Z\Pi_{aq} + C\Pi_s$ $Z\Pi_{aq}$                        |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                                          | ۱) يتفاعل الخارصين مع محلول كبريتات النحاس II                                  |
|                                                                          | . يحل الخارصين محل كاتيونات النحاس ( $\mathrm{Cu}^{2+}$ ) في المحلول           |
|                                                                          | <ul> <li>٣) لا يمكن حفظ محلول كبريتات النحاسII في وعاء من الخارصين.</li> </ul> |
|                                                                          | <ul><li>٤) لا يتفاعل محلول كبريتات الخارصين مع لوح النحاس.</li></ul>           |
|                                                                          | <ul> <li>٥) مكن حفظ محلول كبريتات الخارصين في وعاء من النحاس</li> </ul>        |
| يتآكل لوح الخارصين وتقل كتلته ويزداد تركيز                               | ٦) تتأكسد ذرات الخارصين إلى كاتيونات تنتقل إلى المحلول ولذلك                   |
|                                                                          | كاتيونات $^{2}$ في المحلول                                                     |
| سب وتزداد كتلته ويقل تركيز كاتيونات $\operatorname{Cu}^{2+}$ في المحلول. | ۷) تختزل کاتیونات النحاس $\mathrm{Cu}^{2+}$ من المحلول إلى ذرات نحاس تتر       |
|                                                                          | س١ - أكمل الفراغات في العبارات التالية بما يناسبها علميا:                      |
|                                                                          | <ul> <li>١) الأنود هو والكاثود هو</li></ul>                                    |
|                                                                          | ٢) جهد اختزال الخارصين جهد اختزال النحاس.                                      |
| ä                                                                        | ٣) الخارصين النحاس في السلسلة الكهروكيميائي                                    |
| ،II تعتبر عاملI                                                          | ٤) الخارصين يعتبر عامل بينما كاتيونات النحاس                                   |
|                                                                          | <ul><li>٥) يعتبر الخارصين عامل مختزل النحاس.</li></ul>                         |
|                                                                          | ٦) يعتبر النحاس عامل مختزل الخارصين.                                           |
| من كاتيون الخارصين +Zn²                                                  | کاتیون النحاس ${ m Cu}^{+2}$ تعتبر عامل مؤکسد (۷                               |
| من كاتيون النحاس <sup></sup> Cu                                          | رمايون الخارصين $\mathrm{Zn}^{+2}$ تعتبر عامل مؤكسد $\mathrm{Zn}^{+2}$         |
|                                                                          | س٢ - علل لما يلي تعلىلا علميا دقيقاً :                                         |
|                                                                          | ۱- لا يمكن يحفظ محلول كبريتات النحاسII في وعاء من الحديد.                      |
|                                                                          |                                                                                |
|                                                                          | <ul> <li>٢- يمكن حفظ محلول كبريتات الحديدII في إناء من النحاس.</li> </ul>      |
|                                                                          |                                                                                |
| II الزرقاء تتكون طبقة بنية إسفنجية على سطح قطعة                          | ٣- عند وضع قطعة من فلز الخارصين في محلول كبريتات النحاس                        |
|                                                                          | الخارصين، ويبهت لون محلول كبريتات النحاس II؟                                   |
|                                                                          |                                                                                |
|                                                                          |                                                                                |

|                                                                                                         | لســالبة: فهي                                  | 💠 الفلزات ذات جهود الاختزال ا                                        |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|--|
| وهي نشاطاً كيميائياً من الهيدروجين                                                                      | سلسلة الكهروكيميائية                           | ١) تسبق (تعلو) الهيدروجين في ال                                      |  |
| ٢) تحل محل الهيدروجين في الأحماض والماء. وتستخدم في تحضير غاز في المختبر                                |                                                |                                                                      |  |
| . في صورة                                                                                               | ة العنصرية، لكنه يوجد                          | ٣) <u>لا</u> توجد في الطبيعة على الصور                               |  |
|                                                                                                         | لموجبة : فهي                                   | 💠 الفلزات ذات جهود الاختزال ا                                        |  |
| ئية وهي نشاطاً كيميائياً من الهيدروجين                                                                  | في السلسلة الكهروكيميا                         | ١) تلي ( أسفل من ) الهيدروجين ﴿                                      |  |
| م في تحضير غاز في المختبر                                                                               | عماض والماء ولا تستخد                          | ٢) <u>لا</u> تحل محل الهيدروجين في الأح                              |  |
|                                                                                                         | لعنصرية وفي صورة                               | ٣) توجد في الطبيعة على الصورة اا                                     |  |
| ونات لذا فان اللافلز الذي له جهد اختزال قطبي أكبر يكون أكثر                                             | تِها على اكتساب الالكتر                        | ٤) نشاط اللافلزات يعتمد على قدر                                      |  |
| اِل قطبي أقل وبالتالي يستطيع أن يحل محله في محاليل مركباته                                              | لافلز الذي له جهد اختز                         | نشاطا وأسهل في الاختزال من الا                                       |  |
|                                                                                                         | ـة                                             | اللافلزات ذات جهود اختزال موجب                                       |  |
|                                                                                                         | يحل محل                                        |                                                                      |  |
|                                                                                                         | أكثر نشاطا من                                  |                                                                      |  |
| أنيونات اللافلز الأقل جهد اختزال في محاليل مركباته.                                                     |                                                | 💠 اللافلز الأعلى جهد اختزال                                          |  |
|                                                                                                         | يؤكسـد                                         |                                                                      |  |
|                                                                                                         | يقع أسفل من                                    |                                                                      |  |
|                                                                                                         |                                                |                                                                      |  |
| : يحدث بشكل تلقائي ومنه نستنتج $\mathrm{C}\ell_{2(\mathrm{g})}$ + 2 NaI                                 | $_{\rm aq}$ $\rightarrow$ 2 Na                 | $	ext{Cl}_{	ext{aq}}$ + $	ext{I}_{2	ext{(g)}}$ : س۲ - التفاعل التالي |  |
|                                                                                                         | يد الصوديوم                                    | ۱) يتفاعل الكلور مع محلول يود                                        |  |
|                                                                                                         | وديد $(I^{\scriptscriptstyle -})$ في المحلول . | ٢) يحل الكلور محل أنيونات اليو                                       |  |
|                                                                                                         | والكاثود هو                                    | ٣) الأنود هو                                                         |  |
| ليود.                                                                                                   | جهد اختزال ا                                   | ٤) جهد اختزال الكلور                                                 |  |
| ميائية                                                                                                  | ِد في السلسلة الكهروكيـ                        | ٥) الكلور اليو                                                       |  |
| ليوديد                                                                                                  | بينما أنيونات ا                                | ٦) الكلور يعتبر عامل                                                 |  |
|                                                                                                         | اليود                                          | ۷) يعتبر الكلور عامل مؤكسد                                           |  |
| $\frac{1}{1}$ وأنيونات العنصر $\frac{1}{2}$ في محاليل أملاحه ، فتكون جميع الإجابات العنصر $\frac{1}{2}$ | ت العنصر X تحل محل                             | س٣ - في تفاعل معين وُجد أن ذراه                                      |  |
|                                                                                                         |                                                | التالية صحيحة <u>عدا :</u>                                           |  |
| X تختزل ذرات العنصر $lacktriangle$                                                                      | من جهد اختزال العنص                            | ي جهد اختزال العنصر $X$ أعلى                                         |  |
| ئة تأكيب أنوزات العنوم 7                                                                                | في الساسلة الكميمكيميا                         | $\mathbf{Z}_{\mathbf{Z}}$                                            |  |

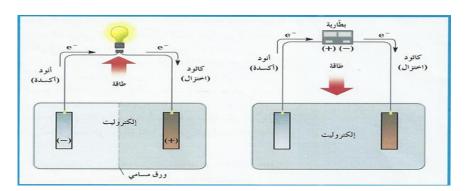
س١ - أكمل الفراغات في العبارات التالية بما يناسبها علمياً:

#### تابع: سلسلة جهود الاختزال القياسية

| لتنبؤ بإمكانية حدوث تفاعل الاكسدة والاختزال بشكل تلقائي ام لا عن طريق حساب جهد التفاعل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *يمكن ال |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| جهد التفاعل = جهد اختزال الكاثود – جهد اختزال الأنود                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | حیث -    |
| ذا كانت جهود الاختزال القياسية لكل من الكلور والبروم هي ( +1.36 و +1.065 ) فولت على الترتيب فإن قيمة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | س۱ - إذ  |
| . التفاعل التالي: $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{2}$ $^{$ | جهد      |
| ا علمت أن جهود الاختزال القياسية للعنصرين الافتراضيين $X_2$ , $Y_2$ هي +١,٠٦٠ و $V$ على الترتيب فإن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | س۲ - إذ  |
| عل التالي $Y_2 + 2$ NaY $X_2 + 2$ NaY عل التالي $X_2 + 2$ NaY عل التالي .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | التفا    |
| تطبيقات على سلسلة جهود الاختزال القياسية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| ا للتفاعل التلقائي التالي: $M_{(s)} + X^{2+}_{(aq)}  ightarrow X_{(s)} + M^{2+}_{(aq)}$ فإن العنصر الافتراضي $M_{(s)}$ يقع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۱- طبقا  |
| صر الافتراضي $X$ في السلسلة الكهروكيميائية.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | العند    |
| للغنسيوم تلقائياً محل الرصاص في محاليل مركباته مما يدل على أن جهد اختزال الرصاص من جهد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۲- يحل   |
| اِل المغنسيوم.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | اختز     |
| علمت أن جهود الاختزال القطبية القياسية لكل من النيكل، الحديد، النحاس، الألمنيوم، هي  0.23 - ، 0.4 - ،<br>0 + ، 1.67 - على الترتيب ، فإن :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| النحاس يؤكسد الألمنيوم ولا يؤكسد الحديد. $\square$ النيكل يختزل الحديد ولا يختزل النحاس.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 🗆      |
| الحديد يؤكسد الألمنيوم ويختزل النيكل. $\square$ الألمنيوم يؤكسد الحديد ولا يؤكسد النحاس.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ı 🗆      |
| علمت أن جهود الاختزال القطبية لكل من $^+ Ag^+$ , $^+ Cu^{2+}$ , $^+ Cu^{2+}$ , $^+ O.34$ ، هي $^+ O.34$ ، $^+ O.34$ ، $^+ O.126$ $^+ O.126$ ، هي $^+ O.34$ ، $^+$ |          |
| . $\operatorname{Pb(NO_3)}_2$ الفضة عند غمره في محلول $\operatorname{ZnSO_4}_4$ الفضة عند غمره في محلول                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 🗖      |
| . $\mathrm{ZnSO}_4$ الرصاص عند غمره في محلول $\square$ . $\mathrm{CuC}\ell_2$ الرصاص عند غمره في محلول                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ı 🗆      |
| نانت جهود الاختزال القطبية القياسية لكل من الكروم ، الكادميوم ، النيكل هي على الترتيب V 0.74 V - ، 0.4 - ،                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| $Cd + Cr^{3+} \rightarrow Cd^{2+} + Cr \square \qquad Ni + Cr^{3+} \rightarrow Ni^{2+} + Cr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| $Ni + Cd^{2+} \rightarrow Ni^{2+} + Cd \square$ $Cr + Cd^{2+} \rightarrow Cr^{3+} + Cd$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |



| ذا كان كاتيون العنصر أصعب في الاختزال من الهيدروجين ، فإن ذلك يدل على أن جهد اختزال هذا العنصر                                                                                                                           | ٤- إد       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ىن جهد اختزال الهيدروجين.                                                                                                                                                                                                | 3           |
| م جهود الاختزال القطبية لأنصاف الخلايا التي تسبق الهيدروجين لها إشارة ولذلك فإن أي نصف خلية                                                                                                                              | ٥- قي       |
| منها يعمل عند توصيله بنصف خلية الهيدروجين، وبالتالي فهي اكسدة من                                                                                                                                                         | ٥           |
| لهيدروجين، و اختزالا منه.                                                                                                                                                                                                | 1           |
| غلزات التي تسبق الهيدروجين في السلسلة الكهروكيميائية أن تحل محله في مركباته.                                                                                                                                             | ר - ול      |
| م جهود الاختزال القطبية لأنصاف الخلايا التي تلي الهيدروجين لها إشارة ولذلك فإن أي نصف خلية                                                                                                                               | ۷-قید       |
| منها يعمل عند توصيله بنصف خلية الهيدروجين.                                                                                                                                                                               | ٥           |
| ملزات التي تلي الهيدروجين في السلسلة الكهروكيميائية أن تحل محله في مركباته.                                                                                                                                              | ۸- الف      |
| وى العوامل المؤكسدة هي تلك الأنواع التي تقع على السهمين وفي أسفل السلسلة. وبذلك يعتبر عنصر                                                                                                                               | ٩- أق       |
| أقوى العوامل المؤكسدة، بينما يعتبر أضعف العوامل المؤكسدة.                                                                                                                                                                | -           |
| نوى العوامل المختزلة هي تلك الأنواع التي تقع على السهمين وفي أعلى السلسة يعتبر عنصر                                                                                                                                      | ۰۱-أذ       |
| أقوى العوامل المختزلة، بينما يعتبر أضعف العوامل المختزلة.                                                                                                                                                                | -           |
| ذا كانت قيمة جهد التفاعل موجبة، دل ذلك على أن التفاعل بشكل تلقائي مستمر.                                                                                                                                                 | 11-إد       |
| ذا كانت قيمة جهد التفاعل سالبة، دل ذلك على أن التفاعل بشكل تلقائي.                                                                                                                                                       | 17-إد       |
| فلز الذي له جهد اختزال قطبي أقل يكون نشاطاً و في الأكسدة من الفلز الذي له                                                                                                                                                | ۱۲-ال       |
| عهد اختزال قطبي أكبر وبالتالي فإن الفلز الذي يسبق في السلسلة كاتيون الفلز الذي يليه في محاليل                                                                                                                            | <b>&gt;</b> |
| ىركباته .                                                                                                                                                                                                                | 3           |
| لافلز الأكبر جهد اختزال يكون نشاطاً و في الاختزال من اللافلز الأقل جهد اختزال                                                                                                                                            | JI-1E       |
| نطبي وبالتالي أن يحل محله في محاليل مركباته.                                                                                                                                                                             | ė           |
| و كان جهد اختزال $1.75  	ext{V}  	ext{sn}^{4+} /  	ext{Sn}^{2+}  	ext{sn}^{2+} $ يساوي $1.75  	ext{V}  	ext{sn}^{4+} /  	ext{Sn}^{2+}  	ext{sn}^{2+}$ يساوي: $1.5  	ext{Sn}^{4+}  	ext{Sn}^{4+} +  	ext{Fe}^{2+}$ يساوي: |             |
| - 0.6 V                                                                                                                                                                                                                  | J           |
| : يدل على أن $Pb + 2\mathrm{Ag}^+  ightarrow Pb^{2+} + 2\mathrm{Ag}$ يدل على أن                                                                                                                                          |             |
| الرصاص يلي الفضة في السلسلة الكهروكيميائية. $\square$ الرصاص عامل مؤكسد أقوى من الفضة.                                                                                                                                   |             |
| جهد الاختزال القطبي للرصاص أكبر منه الفضة. $\square$ الرصاص عامل مختزل أقوى من الفضة.                                                                                                                                    |             |


| ِجهد | Sc / Sc <sup>2+</sup> ( 1M ) // Cu <sup>1</sup> تساوي 4.41 V + ، و | لفانية Cu ) / Cu      | ة المحركة الكهربائية للخلية الج     | ١٧-إذا كانت القو   |
|------|--------------------------------------------------------------------|-----------------------|-------------------------------------|--------------------|
| :    | نزال القياسي لقطب السكانديوم ( Sc ) يساوي :                        | 0.3 + ، فإن جهد الاخت | $4~\mathrm{V}$ سي لقطب النحاس يساوي | الاختزال القيا     |
|      | - 2.75 V □ + 2                                                     | 2.07 V 🗖              | - 2.07 V                            | + 2.75 V $\square$ |
|      | ديد، النحاس، الألمنيوم، هي                                         | ة لكل من النيكل، الحد | جهود الاختزال القطبية القياسية      | ۱۸-إذا علمت أن     |
|      |                                                                    | ب ، فإن :             | - ، 0.34 + ، 1.67 - على الترتي      | 0.4 · - 0.23 V     |
|      | l النيكل يختزل الحديد ولا يختزل النحاس.                            | <b>.</b>              | ئسد الألمنيوم ولا يؤكسد الحديد      | 🗖 النحاس يؤكّ      |
|      | <ul> <li>الألمنيوم بؤكسد الحديد ولا يؤكسد النحاس.</li> </ul>       |                       | لسد الألمنيوم ويختزل النبكل.        | الحديد يؤك         |

# الغلايا الإلكنز وليتيية

# الخلايا الإلكتروليتية (خلايا التحليل الكهربائي)

# س١: اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:

|   |   | ***                                                                |    |
|---|---|--------------------------------------------------------------------|----|
| ( | ) | العمليات التي تستخدم فيها الطاقة الكهربائية لإحداث تغير الكيميائي  | -1 |
| ( | ) | الجهاز الذي تُجرى فيه عملية التحليل الكهربائي.                     | -۲ |
|   |   | خلية الكتروليتية تستخدم لإحداث تغير كيميائي باستخدام طاقة كهربائية | -٣ |
| ( | ) | لإتمام حدوث تفاعل أكسدة واختزال غير تلقائي.                        |    |



#### <u>س۲ - قارن بین کل من :</u>

| الخلية الإلكتروليتية | الخلية الجلفانية | وجه المقارنة                     |
|----------------------|------------------|----------------------------------|
|                      |                  | التعريف                          |
|                      |                  | أهميتها                          |
|                      |                  | اتجاه سريان الإلكترونات في السلك |
|                      |                  | إشارة الأنود                     |
|                      |                  | إشارة الكاثود                    |
|                      |                  | العملية عند الأنود               |
|                      |                  | العملية عند الكاثود              |
|                      |                  | نوع التفاعل (تلقائي-غير تلقائي)  |
|                      |                  | أمثلة                            |

# تطبيقات الخلايا الإلكتر وليتية

### 1- التحليل الكهربائي لمصهور كلوريد الصوديوم:

| س١ - اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:                              |
|------------------------------------------------------------------------------------------------------------|
| الخلية الإلكتروليتية التي تجري فيها عملية التحليل الكهربائي لمصهور كلوريد الصوديوم التجارية. (             |
| س٢- اكتب التفاعلات الحادثة عند كل من الأنود والكاثود عند إمرار التيار الكهربائي في مصهور كلوريد الصوديوم ؟ |
| - التفاعل عند الأنود ( + ) :                                                                               |
| - التفاعل عند الكاثود ( - ) :                                                                              |
| - التفاعل النهائي في الخلية   :                                                                            |
| $(\mathrm{H_2SO_4}$ محمض بحمض كبريتيك كبريتيك ) ( $\mathrm{H_2O}$ ) ( التحليل الكهربائي للماء:             |
| س٣ - اكتب التفاعلات الحادثة عند كل من الأنود والكاثود عند إمرار التيار الكهربائي في الماء المحمض؟          |
| - التفاعل عند الأنود ( + ) :                                                                               |
| (علماً بأن جهود اختزال أنيون الكبريتات ${ m SO_4}^2$ والماء ${ m H_2O}$ على التوالي هي $2$ و $2$ فولت $$   |
|                                                                                                            |
| - التفاعل عند الكاثود ( - ) :                                                                              |
| (علماً بأن جهود اختزال كاتيونات الهيدروجين $^+ H$ في الوسط الحمضي والماء على التوالي ( $^0$ و $^0$ و ولت ) |
| - التفاعل النهائي في الخلية:                                                                               |
| س٤ - عند إمرار التيار الكهربائي في الماء المحمض ينتج غاز عند قطب الأنود نتيجة حدوث عمليةوغاز               |
| س٥ علل: حجم غاز الهيدروجين الناتج من التحليل الكهربائي للماء ضعف حجم غاز الأكسجين؟                         |
|                                                                                                            |

# 3- التخليل الكهربائي لخلول مركز من كوريد الصوديوم (ملح الطعام)

س١ - اكتب التفاعلات الحادثة عند الأنود والكاثود عند إمرار التيار الكهربائي في محلول مركز من كلوريد الصوديوم ؟

| - التفاعل عند الأنود ( + ) : $ ho$ التفاعل عند الأنود ( + ) : (علماً بأن جهود اختزال أنيون الكلوريد $ ho$ والماء $ ho$ على التوالي هي $ ho$ و 1.23 فولت $ ho$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                               |
| <ul> <li>ولكن تراكم غاز الأكسجين على القطب يرفع جهد اختزال الماء ليفوق جهد اختزال الكلور فيتأكسد أنيون الكلوريد.</li> </ul>                                   |
| - التفاعل عند الكاثود ( - ) :                                                                                                                                 |
| (علماً بأن جهود اختزال كاتيونات الصوديوم و الماء على التوالي ( -٢,٧١ و ٢,٧١- فولت )                                                                           |
|                                                                                                                                                               |
| - التفاعل النهائي في الخلية :                                                                                                                                 |
|                                                                                                                                                               |
| س٢ - عند إمرار التيار الكهربائي في محلول مركز من كلوريد الصوديوم ينتج غاز عند قطب الأنود وغاز عند قطب الكاثود                                                 |
| س٣: عند الكاثود يصبح الوسط يمكن ان يتحول لون كاشف أزرق البروموثيمول إلى اللون                                                                                 |

# الطلاء بالكهرباء

### س ١\_ اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:

| ى - الصنب الاسم الو المصطلى العلمي العدي عدل عليه الصل عبدرة <del>الحر</del> | المفارات العالية:     |
|------------------------------------------------------------------------------|-----------------------|
| ترسيب طبقة رقيقة من فلز على جسم معدني في خلية الكتروليتية.                   | (                     |
| ٢ ـ أكمل الفراغات في العبارات التالية بما يناسبها علميا:                     |                       |
| عند طلاء جسم معدني بطبقة من الفضة يوصل الجسم بقطب                            | في خلية تحليل كهربائي |
| يكون الأنود فيها عبارة عن                                                    |                       |
| يُستخدم كإلكتروليت محلول أحد أملاح الفضة مثل                                 |                       |
| عند طلاء ملعقة نحاسية بطبقة رقيقة من الفضة يتم توصيل الملعقة بالقطب          | ، لمصدر التيار.       |

# الوهدة الفامسة: المركبات الميدروكربونية

# الركبات العضوية

| :6 | هن العبارات التالي        | س ١ - اكتب الاسم أو العطلح العلمي الذي تدل عليه كل عبارة                                     |
|----|---------------------------|----------------------------------------------------------------------------------------------|
| (  | )                         | <ul> <li>المركبات التي تحتوي على عنصر الكربون ماعدا بعض المركبات</li> </ul>                  |
| (  | )                         | <ul> <li>٢- المركبات التي تتكون من عنصري الكربون والهيدروجين فقط.</li> </ul>                 |
|    |                           | <ul> <li>٣- المركبات التي تتكون من الكربون والهيدروجين وعناصر أخرى مثل الأكسجين</li> </ul>   |
| (  | )                         | والنيتروجين والكبريت والهالوجينات والفوسفور.                                                 |
| (  | )                         | <ul> <li>عركبات عضوية جميع الروابط بين ذرات الكربون فيها روابط تساهمية أحادية</li> </ul>     |
| (  | )                         | <ul> <li>٥- مركبات تحتوي على رابطة تساهمية ثنائية واحدة بين ذرتي كربون على الأقل</li> </ul>  |
|    | )                         | <ul> <li>٦- مركبات تحتوي على رابطة تساهمية ثلاثية واحدة بين ذرتي كربون على الأقل</li> </ul>  |
|    |                           | (                                                                                            |
| (  | )                         | <ul> <li>٧- المركبات المشابهة لحلقة البنزين في الصيغة التركيبية والسلوك الكيميائي</li> </ul> |
| (  | )                         | <ul> <li>٨- الصيغة الكيميائية التي تعبر عن عدد ذرات المركب بأصغر رقم صحيح.</li> </ul>        |
|    |                           | س٢ - أكمل الفراغات في العبارات التالية بما يناسبها علميا:                                    |
|    | لكربون فيها روابط تساهمية | ١) يعتبر الميثان والإيثان من المركبات العضوية لان جميع الروابط بين ذرات ا                    |
|    |                           | أحادية.                                                                                      |
|    | ، بين ذرتي الكربون فيها   | ٢) يعتبر الإيثين والبروبين من المركبات العضوية لوجود رابطة تساهمية ثنائية                    |
|    |                           | ٣) يعتبر الإيثاين والبروباين من المركبات العضوية لوجود رابطة تساهمية ثلا                     |
|    |                           | ع) الصيغة الجزيئية للجلوكوز $\mathrm{C_6H_{12}O_6}$ فتكون صيغته الأولية                      |
|    |                           | هي                                                                                           |
|    |                           | ري الصّيغة الأولية للمركب ${ m C_5H_{10}O_5}$ هي ${ m C_5H_{10}O_5}$                         |
|    |                           | س ٢ - اي من الأمثلة التالية هيغ اولية وأيها هيغ جزيئية؟                                      |

| مضاعف | الصيغة الأولية | صيغة المركب       |   |
|-------|----------------|-------------------|---|
|       |                | $C_6H_6$          | ١ |
|       |                | CH <sub>2</sub> O | ۲ |
|       |                | $C_3H_8$          | ٣ |
|       |                | $C_6H_{12}O_6$    | ٤ |

### الخيدروكربونات

# س ١: أكمل الفراغات في العبارات التالية بما يناسبها علميا:

| فقط .         | -تحتوي هذه المركبات على عنصري و      |
|---------------|--------------------------------------|
| وهيدروكربونات | تقسم الهيدروكربونات إلى هيدروكربونات |

# س ٢ - اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:

| ( | ن ذرات الكربون ( | 1- أبسط أنواع الهيدروكربونات وتحتوي على روابط تساهمية أحادية فقط بي |
|---|------------------|---------------------------------------------------------------------|
| ( | )                | 2- مجموعة قادرة على تكوين رابطة تساهمية احادية واحدة                |
|   | مطة روابط        | 3- ألكانات تحتوي على سلاسل من ذرات الكربون متصلة ببعضها البعض بواس  |
| ( | )                | تساهمية أحادية                                                      |

# تسمية الألكانات وستقيمة السلسلة :

| اسم المركب | عدد ذرات الكربون | الصيغة الجزيئية | الصيغة التركيبية المكثفة                                                                                                        |
|------------|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
|            | ١                | CH <sub>4</sub> | $\mathrm{CH}_4$                                                                                                                 |
|            | ۲                | $C_2H_6$        | CH <sub>3</sub> CH <sub>3</sub>                                                                                                 |
|            | ٣                | $C_3H_8$        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                 |
|            | ٤                | $C_4H_{10}$     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                 |
|            | 0                | $C_5H_{12}$     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                 |
|            | ٦                | $C_6H_{14}$     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                 |
|            | ٧                | $C_7H_{16}$     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 |
|            | ٨                | $C_8H_{18}$     | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> |

#### ٧ - الألكانات متفرعة السلسلة

# س ١- اكتب الاسم أو المطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:

- 1- الذرة او المجموعة التي يمكن أن تحل محل ذرة الهيدروجين في جزئ الهيدروكربون الأساسي. (
- 2- الألكانات التي تتكون عند إضافة مجموعة الألكيل البديلة إلى الألكانات مستقيمة السلسلة. (
- 3- الجزء المتبقى من الألكان المقابل بعد نزع ذرة الهيدروجين منه.

#### : IUPAC والفائية مستقد الحالية الحالية العالمية العالمية العالمية العالمية العالمية العالمية العالمية العالمية

$$\mathrm{CH_3} - \mathrm{\overset{CH_3}{\overset{}{\underset{}{\text{CH}_3}}}-\overset{\mathrm{CH_3}}{\underset{}{\text{CH}_3}}}$$

#### س ٣ - اكتب الصيغ النركيبية الكاملة لكل من المركبات التالية:

4,3 - ثنائي ميثيل الهكسان

2,2,4 -ثلاثي ميثيل البنتان

3-إيثيل البنتان

-4 الثوكتان -2 ميثيل الأوكتان -4

# الميدروكربونات غير الشبعة ١ - الألكينات

# س ١- اكتب الاسم أو المطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:

| رابطة تساهمية ثنائية واحدة بين ذرتي كربون على الأقل ( )   | ۱) مرکبات تحتوي علی ر  |
|-----------------------------------------------------------|------------------------|
| نات تحتوي على روابط تساهمية ثنائية واحدة بين ذرتي كربون ( | ۲) نوع من الهيدروكربون |
| : •                                                       | تسمية الألكيضات        |
| : 4                                                       | ني 2 - أكمل الجدو      |

# الصيغة التركيبية المكثفة للمركب اسم المركب

| اسم المرتب | الضيعة التركيبية المكتفة للمركب                      |
|------------|------------------------------------------------------|
|            | CH <sub>2</sub> =CH <sub>2</sub>                     |
|            | СН <sub>3</sub> СН=СН <sub>2</sub>                   |
|            | CH <sub>3</sub> CH <sub>2</sub> CH=CH <sub>2</sub>   |
|            | CH <sub>3</sub> CH=CHCH <sub>2</sub> CH <sub>3</sub> |

| : IUPAC plai le la | - اکتب اسم الرکبات الت                                               | - Y 🞉 |
|--------------------------------------------------------|----------------------------------------------------------------------|-------|
|                                                        | CH <sub>2</sub> =CH-CH <sub>3</sub>                                  | (أ)   |
|                                                        | CH <sub>3</sub> - CH - CH=CH-CH <sub>3</sub><br> <br>CH <sub>3</sub> | (ب)   |
|                                                        | $CH_2 = CH-CH-CH_3$ $CH_3$                                           | (ج)   |

س ٤: اكتب الصيغ النزكيبية الكاملة لكل من المركبات التالية:

بروبين 2-بنتين 1-بيوتين

# **-2**

|         | ل عبارة من العبارات التالية : | سم أو المصطلح العلمي الذي تدل عليه كا                | س ۱: اكتب الا،        |
|---------|-------------------------------|------------------------------------------------------|-----------------------|
| (       | ون على الأقل. (               | على رابطة تساهمية ثلاثية واحدة بين ذرتي كرب          | ۱) مرکبات تحتوي       |
| (       | ارتي كربون . (                | تحتوي على روابط تساهمية ثلاثية واحدة بين ذ           | ۲) هیدروکربونات       |
|         |                               | 4.0                                                  | 1 = 4544 +            |
| _       |                               |                                                      | الألكا                |
| الجدول: | اسم المركب                    | الصيغة التركيبية المكثفة للمركب                      | س۲ – أكمل             |
|         |                               | СН≡СН                                                |                       |
|         |                               | CH₃C≡CH                                              |                       |
|         |                               | CH <sub>3</sub> -C≡C-CH <sub>2</sub> CH <sub>3</sub> |                       |
|         | IU                            | <b>م المركبات التالية مستخدما نظام</b> JPAC          | س۳ ـ اکتب اس          |
|         | IU                            | <b>م المركبات التالية مستخدما نظام</b> JPAC          | س۳ ـ اکتب اس          |
|         |                               | CH ≡ C -                                             | · CH <sub>3</sub> (1) |
|         |                               | $CH_3 - CH - C \equiv C -$                           | CH <sub>3</sub> (ب)   |
|         |                               | $\overset{1}{\mathrm{CH}_{3}}$                       |                       |
|         | والذي يُعرف بلحام الأكسجين.   | كوقود في عملية لحام الفولاذ                          | ( د) يستخدم غاز ·     |
|         | ابطة الثلاثية تساوي           | هو جزئ خطي والزاوية بين ذرتي الكربون في الر          | (ه) جزئ الإيثاين      |
| الضعيفة |                               | التي تحدث بين جزيئات الألكانات و الألكينات           |                       |
|         | *** Ff**** ** 1               | ~ bl ~ 1 ~ b** 1 ~ bl** ~ ** bl *                    | <b>**</b> ** * * * *  |
|         | ات البالية :                  | سيغ التركيبية الكاملة لكل من المركب                  | سع _ اكتب الد         |

(ب) بيوتاين

(أ) إيثاين

#### خواص العبدروكريونات

## أ - الفواص الفيزيائية :

#### س١- أكمل الفراغات في العبارات التالية عا يناسبها علميا:

١-جميع الهيدروكربونات تقريبا ------- كثافة من الماء.

٢-كثافة الميثان والإيثاين ------- كثافة الهواء بينما كثافة الإيثان والإيثين -------- كثافة الهواء.

٣-الهيدروكربونات الغازية بصفة عامة ------ كثافة الهواء.

٤-درجة غليان الهيدروكربونات ------ مع زيادة عدد ذرات الكربون بشكل عام.

٥-تشكل الهيدروكربونات مع الهواء مخاليط ------- الاشتعال وهي غير قابلة ------- مع الماء.

# ب-الذواص الكيميانية:

#### ١ - تفاعلات الاهتراق :

تحترق في وفرة من الأكسجين وينتج ثاني أكسيد الكربون وبخار الماء.

#### س ٢ - أكمل كتابة المعادلات التالية:

$$2$$
-  $C_2H_4+3O_2$   $\rightarrow$  ------ + ------ + طاقة

3- 
$$C_2H_2 + 5O_2$$
  $\rightarrow$  ------ + ------ + طاقة

#### : Jlanssi si Xalii - Y

( استبدال ذرة هيدروجين أو أكثر من المركب المشبع بذرات أخرى مع الحفاظ على سلسلة المركب الكربونية )

1- 
$$CH_4 + Cl_2$$
  $\rightarrow$  ..... +  $HCl$ 

2- 
$$CH_4 + 2Cl_2$$
  $\rightarrow$  ----- + 2  $HCl$ 

$$3- CH_4 + 3Cl_2 \rightarrow ---- + 3 HCl$$

$$\xi$$
-  $CH_4 + \xi Cl_2$   $\rightarrow$  .....  $\xi$   $HCl$ 

#### ٣ - تفاهلات الافعافة

أ - إضافة الهيدروجين (الهدرجة) : (في وجود النيكل كمادة حفازة و درجة حرارة °C (200 °C) س ٤ - أكمل كتابة المعادلات التالية:

$$1- CH_2 = CH_2 + H_2 \qquad \qquad \stackrel{\textbf{Ni}}{\rightarrow} \qquad \cdots$$

3- CH≡CH + 2 
$$H_2$$
  $\xrightarrow{\text{Pd}}$  -----

( الكلور  $X_2$  ) ( الكلور  $X_2$  ) ( الكلور  $X_2$  ) ( الكلور بون ) ( الكلور كربون ) س ٥ - أكمل كتابة المعادلات التالية:

$$1- CH_2 = CH_2 + Cl_2 \rightarrow \dots$$

$$2- CH \equiv CH + Cl_2 \rightarrow \cdots$$

$$3- CH \equiv CH + 2Cl_2 \rightarrow \dots$$

ج -إضافة هاليد الهيدروجين : (HX) مثل HCl

س ٦ - أكمل كتابة المعادلات التالبة:

$$2- CH \equiv CH + HCl \rightarrow \dots$$

$$3- CH \equiv CH + 2HCl \rightarrow \dots$$

س٧ - اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:

عند إضافة حمض HX على ألكين يضاف الهيدروجين على ذرة الكربون الأكثر هيدروجين والهاليد على ذرة الكربون الأقل هيدروجين ( )

د -إضافة الماء H<sub>2</sub>O:

#### س٨ - أكمل كتابة المعادلات التالية:

مخفف  $H_2SO_4$ 

$$2- CH_2 = CH-CH_3 + H-OH$$
 مخفف  $H_2SO_4$   $HgSO_4 / 80 \circ C$ 

# الميدروكربونات الطقية

# س ١ \_ أكمل الفراغات في العبارات التالية بما يناسبها علميا:

|             | لى العالم الكيميائي والفيزيائي | ١) يعود الفضل في اكتشاف ودراسة البنزين كأبسط مركب هيدروكربوني عطري إ        |
|-------------|--------------------------------|-----------------------------------------------------------------------------|
|             |                                | الإنجليزي                                                                   |
|             |                                | ٢) أول من وضع فرضية التكوين الحلقي لجزئي البنزين العالم الألماني            |
|             |                                | س ٢ ـ أعد كتابة العبارة بعد تصحيح الخطأ:                                    |
|             |                                | ١-يتميز البنزين بأنه مستقر كيميائيا وأكثر تفاعلا من الألكينات و الألكاينات. |
|             |                                |                                                                             |
| هي دخوله في | ة كثيرة ومن أهم استعمالاته     | ٢-يستعمل البنزين كمذيب لكثير من المواد القطبية وفي قطاعات تجارية وصناعي     |
| <b></b>     |                                | إنتاج المركبات غير العطرية.                                                 |
|             |                                |                                                                             |
|             | لعبارات التالية :              | س٣ ـ اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من ا               |
| (           | )                              | ١-مركبات الهيدروكربونية يتصل طرفا سلسلة الكربون لتشكل حلقة.                 |
| (           | ن الحلقات (                    | ٢-الهيدروكربونات الحلقية غير المشبعة والتي تحتوي حلقة مفردة أو مجموعة م     |
| (           | )                              | ٣-مصطلح يستخدم لوصف أي مادة يشبه الترابط فيها ترابط البنزين.                |

| ١-هططنع يستعدم توطف أي هاده يسبه الترابط فيها درابط البنرين. |                  |                    |   |
|--------------------------------------------------------------|------------------|--------------------|---|
| الحلقة المقفلة                                               | الصيغة التركيبية | اسم الألكان الحلقي | ٩ |
|                                                              |                  | بروبان حلقي        | 1 |
|                                                              |                  | بيوتان حلقي        | ۲ |
|                                                              |                  | بنتان حلقي         | ٣ |
|                                                              |                  | هكسان حلقي         | ٤ |
|                                                              |                  | هبتان حلقي         | ٥ |

# تابع: الميدروكربونات الطقية

|   | س٤ - علل: يعتبر البنزين أقل نشاطا من الهكسان الحلقي؟<br>                                              |
|---|-------------------------------------------------------------------------------------------------------|
|   |                                                                                                       |
|   | س٥ - اكتب الاسم أو المصطلح العلمي الذي تدل عليه كل عبارة من العبارات التالية:                         |
| ( | ١-المركبات التي تحتوي على مجموعات بديلة متصلة بحلقة بنزين.                                            |
| ( | ) ( ${ m C}_6{ m H}_5$ - ) من حلقة البنزين بعد حذف ذرة هيدروجين واحدة منه وصيغته ( ${ m C}_6{ m H}_5$ |

# س٦ ـ أكمل الجدول التالي:

| الصيغة التركيبية                              | اسم المركب  | ٩ |
|-----------------------------------------------|-------------|---|
|                                               | البنزين     | 1 |
| ОН                                            |             | ۲ |
| <b>◯</b> ———————————————————————————————————— |             | ٣ |
|                                               | إيثيل بنزين | ٤ |

# تسمية الركبات العطرية تبعا لنظام

# س√\_ أكمل الجدول التالي:

| الصيغة التركيبية                                     | اسم المركب              | ٩  |
|------------------------------------------------------|-------------------------|----|
| CH <sub>3</sub> CH <sub>3</sub>                      |                         | 1  |
| CH <sub>3</sub> CH <sub>3</sub>                      |                         | ۲  |
| CH <sub>3</sub> ———————————————————————————————————— |                         | ٣  |
| CH <sub>3</sub> — CH <sub>2</sub> -CH <sub>3</sub>   |                         | r. |
|                                                      | أرثو -إيثيل ميثيل بنزين | 0  |
|                                                      | ميتا-ثنائي ميثيل بنزين  | ٦  |
|                                                      | بارا-ثنائي إيثيل بنزين  | ٧  |

https://www.ykuwaitanet TEUEGRAMs @ykuwait\_net\_home